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Nuclear Radiation Perturbation of a Semiconductor-

Filled Microwave Cavity

C. R. HADEN, MEMBER, IEEE AND T. D,

Abstract—The perturbation of a semiconductor-filled microwave
cavity by nuclear radiation particles is considered as a possible means
of radiation counting. The TE, mode equations for a spherical cavity
are summarized, and the charge diffusion-recombination equation is
solved for this spherical geometry. The case of a spherical cavity
operating in the TE;; mode, with the charge jonization occurring at
the center, is analyzed. Through the utilization of a semisteady-state
approach, a normalized expression for the power change as a function
of time is obtained. This quantitative description for the output pulse
shape is applied to the case of high-purity CdS at a frequency of 46.5
Gc/s. These results are presented in an accompanying figure.

INTRODUCTION

N RECENT YEARS, considerable interest has been
]:[ generated in the measurement of the microwave

properties of semiconductors [1]-[3]. A great deal
of progress has also been made toward microwave appli-
cations of semiconductor devices [4]-[6]. A relatively
untested concept in the applications field is the utiliza-
tion of the microwave properties of semiconductors for
the detection and the counting of high-energy particle
radiation.

The conventional techniques used in particle detect-
ing and energy spectroscopy involve the use of dc mode
counters [7]. Radiation particles impinge upon the sur-
face of a semiconductor, either in the form of a simple
block or in the form of a reverse biased p-n diode. The
radiation-induced charge carriers are swept to electrodes
by either external or internal fields, collected, and even-
tually counted. Failure to collect all the charge can de-
preciate the signal amplitude and the energy resolution
of the system. An ac mode counter, on the other hand,
relies upon the change in the complex dielectric prop-
erties of the semiconductor. Thus, it is only necessary
that nonequilibrium charges exist; they need not be col-
lected. This implies that ohmic contacts to the semicon-
ductor are not required. Also, larger crystals could be
used, so that beta spectroscopy might be possible.

Initial steps toward the development of ac mode coun-
ters have been taken by Borisov and Marinov [8]. Their
experiment consisted of a CdS crystal placed in parallel
with the tank circuit of a 1-Mc/s oscillator. The out-
put of the oscillator was attenuated as the losses in the
crystal were pulsed by radiation. Resolutions of ap-
proximately 0.5 MeV were obtained for 8.77 MeV alpha
particles from thorium C. It would seem that better
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time resolution could be obtained at microwave frequen-
cles since the pulse rise time would be limited only by
the frequency used. This means that the perturbations
due to single particles could be more readily measured.
The decay time would be limited by the recombination
process, so that materials having inherently short life-
times might be desirable. The problems associated with
“pile-up” would be the same as for dc mode counters,
assuming the particle rate could ever become this high.
This is another topic for analysis within itself and will
not be dealt with here. The fast rise time also indicates
that events occurring very shortly after ionization could
be investigated, if desired.

CAvIiTY PERTURBATION

One technique which might be utilized in ac mode
counting is the power loss resulting from the perturba-
tion of a cavity containing the semiconductor sample.
A spherical cavity would be useful in this case because of
its inherently higher Q. Also, the spherical geometry
readily allows calculation of the diffusion effect, which
has spherical symmetry.

Prior to a discussion of the ac mode cavity techniques,
the Transverse Electric (TE) to » mode equations of the
cavity will be briefly summarized. The TE, fields may
be derived by substituting the mode function [9]

- cos me
F = a,F, = a,FoJ,(kr) P, (cos 6) { . } 1
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into the expressions
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In (1) and (2), a, is a unit vector in the r direction,
Fy is an amplitude factor, J,(k) is the spherical Bessel
function, % is the propagation factor, and P,"(cos 0)
is an associated Legendre function. To satisfy the
boundary conditions (Ey=E4s=0 at r=a where a is the
radius of the cavity in meters), J,(ka) =0. The denum-
erably infinite set of zeros of J (1) =0 will be ordered
as u,, with k= {(1,./a). Thus, the TE, mode function
becomes
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The resonant frequencies of the cavity may be found
by setting k=2w+/ue f, and solving k=u,,/a for f, to
yield

Upq
E—— 4
2ra~/ ue ®

A

It is apparent that there are numerous degeneracies
among the modes since f, is independent of #. The three
lowest-order TE modes are defined as follows.

" r
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(Fr) 111 = Jl (4493 —> sin 0 sin d). (5)
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Even and odd superscripts denote the choice of cos m¢
or sin m¢, respectively. The three modes have the same
mode patterns except for a 90-degree space rotation
from one another.

In the following analysis, it is assumed that the cavity
is operating in the TEg; mode and is filled with a semi-
conducting material. The TE mode is used rather than
a TM mode in order to avoid a singularity at the origin
in the cavity analysis. It is also assumed that an im-
pulse of charge is created at the center of the cavity at
t=0. This could be approximated in practice by placing
a small amount of liquid radioactive material between
the two surfaces of a cleaved crystal, or by drilling a
small hole into which the source would be inserted.

Immediately after creation of the charge impulse
through ionization, the charge carriers begin to diffuse
and recombine. The diffusion-recombination equation
[10] for t>0 in this problem is

% = DV — u (6)
at Tn
where D is the diffusion constant, 7, is the carrier life-
time, » is the carrier density, and #, is the equilibrium
carrier density. If the cavity dimensions are several
times larger than the diffusion length, the solution of
(6) is readily shown to be
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where NV, is the number of ionizations, and 7 is the radial
distance from the origin at the center of the cavity.

CAvITY ANALYSIS

The shape of the pulse created by the ionization may
be obtained through an analysis of the cavity. An exact
solution of Maxwell's equations in transient form can-
not be accomplished because of the complex form of (7).
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Also, the recombination effect takes place in a time
which is large as compared to a microwave period. This
allows a semisteady-state approach, in that E will be
assumed to vary only as et Since the number of car-
riers created is generally too small to significantly
change the real part of the dielectric constant, it is also
assumed that the electric field is undistorted by the
ionization. The power dissipated after ionization is
given by (8).

1 g
Py=— f o2V = f nE4dV. (8)
2 v * 14

2m
In (8), o3 is the conductivity after ionization, E is the
electric field intensity, ¢ is the charge, 7 is the carrier
relaxation time, and m* is the effective mass of the car-
riers. It has been assumed that 7 is unchanged by the
plasma-like conditions near the point of ionization. Sub-
stitution of (7) into (8) yields
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The first integral represents the power dissipated with
no ionization present and can be rewritten as

0’1U

g1
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where € is the permittivity, and U is the maximum en-
ergy stored in the cavity. The normalized change in
power is then

AP ENge_t/T" f B
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The field for a spherical cavity in the TEg; mode has
only one component, given by [11]

Eysing
¢ =

(10)
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sin (kr):| ' (12)
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In (12), E, is a constant, k=2x/\, and XA is the wave-
length. The maximum energy stored for this mode is

2mrekEy?
38

K, (13)

where

1+ k2%a?

K = l:ka — sin? (ka):l, (14)
and “e” is the radius of the cavity. Since the semicon-
ductor crystal has been assumed several times larger
than the diffusion volume, and since most of the re-
combination takes place in one diffusion volume, little
loss in generality is suffered if the integral is taken over
an infinite radius. This is indicated in (15), where the
angular
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integrations have already been performed. Evaluating
the integral in (15), one finds
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The singularity at =0 should be avoided. It is un-
realistic due to the impulse conditions assumed at the
origin and ¢t=0. Equation (16) should, however, give
good results for £>0. Figure 1 shows the further nor-
malized results for high purity CdS. The literature
values [12] used for the various parameters were 7,
=10"%sec, D =13 cm?/volt-second, and e=5.62¢,. Com-
putations were based on the assumption of a frequency
of 46.5 Gg/s.

An interpretation of Fig. 1 can be made in terms of
the physical aspects of the problem. The initial decrease
in attenuation is due to the “spreading” of electrons
which results in the deterioration of the plasma-like
conditions at the origin for £=0%. The peak in attenua-
tion can be attributed to the fact that the maximum
field intensity does not occur at the origin for the par-
ticular mode chosen. As charge carriers diffuse outward
from the origin, a “front” or a maximum in the charge
density passes through the point of maximum field
intensity. Finally, recombination and passage of the
“front” cause the decrease of attenuation toward its
initial value. The unique “peaking” effect obtained with
this mode raises the possibility of basic measurements of
the properties of solid-state plasmas. Also, the height
of the pulse leads to the expectation that such a method
might be readily utilized for radiation detection.
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Fig. 1. The variation in normalized power as a function of time for

a CdS filled spherical cavity operating in the TEp: mode at
46.5 Ge/s.
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