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Filled Microwave Cavitv
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Abstract—The perturbation of a semiconductor-filled microwave

cavity by nuclear radiation particles is considered as a possible means

of radiation counting. The TE, mode equations for a spherical cavity

are summarized, and the charge diffusion-recc)mbination equation is

solved for thk spherical geometry. The case of a spherical cavity

operating in the TEo1l mode, with the charge ionization occurring at

the center, is analyzed. Through the utilization of a semisteady-state

approach, a normalized expression for the power change as a function

of time is obtained. This quantitative description f or the output pulse

shape is applied to the case of high-purity CdS at a frequency of 46.5

Gc/s. These results are presented in an accompanying figure.

INTRODUCTION

I

N RECENT YEARS, considerable interest has been

generated in the measurement of the microwave

properties of semiconductors [1 ]-- [3 ]. A great deal

of progress has also been made toward microwave appli-

cations of semiconductor devices [4 ]– [6 ]. A relatively

untested concept in the applications field is the utiliza-

tion of the microwave properties of semiconductors for

the detection and the counting of high-energy particle

radiation.

The conventional techniques used in particle detect-

ing and energy spectroscopy involve the use of dc mode

counters [7]. Radiation particles impinge upon the sur-

face of a semiconductor, either in the form of a simple

block or in the form of a reverse biased p-n diode. The

radiation-induced charge carriers are swept to electrodes

by either external or internal fields, collected, and even-

tually counted. Failure to collect all the charge can de-

preciate the signal amplitude and the energy resolution

of the system. An ac mode counter, cm the other hand,

relies upon the change in the complex dielectric prop-

erties of the semiconductor. Thus, it is only necessary

that nonequilibrium charges exist; they need not be col-

lected. This implies that ohmic contacts to the semicon-

ductor are not required. Also, larger crystals could be

used, so that beta spectroscopy might be possible.

Initial steps toward the development of ac mode coun-

ters have been taken by Borisov and hfarinov [8]. Their

experiment consisted of a CdS crystal placed in parallel

with the tank circuit of a l-Me/s oscillator. The out-

put of the oscillator was attenuated as the losses in the

crystal were pulsed by radiation. Resolutions of ap-

proximately 0.5 MeV were obtained for 8.77 &leV alpha

particles from thorium Cl. It would seem that better
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time resolution could be obtained at microwave frequen-

cies since the pulse rise time would be limited only by

the frequency used. This means that the perturbations

due to single particles could be more readily measured.

The decay time would be limited by the recombination

process, so that materials having inherently short life-

times might be desirable. The problems associated with

“pile-up” would be the same as for dc mode counters,

assuming the particle rate could ever become this high.

This is another topic for analysis within itself and will

not be dealt with here. The fast rise time also indicates

that events occurring very shortly after ionization could

be investigated, if desired.

CAVITY PERTURBATION

One technique which might be utilized in ac n-lode

counting is the power loss resulting from the pertu rba-

tion of a cavity containing the semiconductor sample.

A spherical cavity would be useful in this case because of

its inherently higher Q. Also, the spherical geometry

readily allows calculation of the diffusion effect, which

has spherical symmetry.

Prior to a discussion of the ac mode cavity technic[ues,

the Transverse Electric (TE) to r mode equations of the

cavity will be briefly summarized. The TEr fields lmay

be derived by substituting the mode function [9]

{)Cos ?@
F = a,F, = a,F~p(kr)Ppm(cos 0) (1)

sin W@

into the expressions

E=– VXF

H=+(VXVX F). (2)
jup

In (1) and (2), a, is a unit vector in the r direction,

FO is an amplitude factor, ~p(kr) is the spherical Bessel

function, k is the propagation factor, and PP~(cos 6)

is an associated Legendre function. To satisfy the

boundary conditions (Eo = Ed = O at r =a where a is the

radius of the cavity in meters), ~p(ka) = O. The den um-

erably infinite set of zeros of ~P(z~) = O will be orclered

as u~a with k = (z~Pq/a). Thus, the TE, mode function

becomes
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The resonant frequencies of the cavity may be found

by setting k = 2r~~ f, and solving k = upq/a for f, to

yield

(f,):, = ‘“Q_ .
2ira~pe

(4)

It is apparent that there are numerous degeneracies

among the modes sincefr is independent of m. The three

lowest-order TE modes are defined as follows.

(5)

Even and odd superscripts denote the choice of cos m~

or sin m~, respectively. The three modes have the same

mode patterns except for a 90-degree space rotation

from one another.

In the following analysis, it is assumed that the cavity

is operating in the TEOII mode and is filled with a semi-

conducting material. The TE mode is used rather than

a TM mode in order to avoid a singularity at the origin

in the cavity analysis. It is also assumed that an im-

pulse of charge is created at the center of the cavity at

i?= O. This could be approximated in practice by placing

a small amount of liquid radioactive material between

the two surfaces of a cleaved crystal, or by drilling a

small hole into which the source would be inserted.

Immediately after creation of the charge impulse

through ionization, the charge carriers begin to diffuse

and recombine. The diffusion-recombination equation

[10] for t> O in this problem is

(6)

where D is the diffusion constant, 7. is the carrier life-

time, n is the carrier density, and nl is the equilibrium

carrier density. If the cavity dimensions are several

times larger than the diffusion length, the solution of

(6) is readily shown to be

iv,
n=nl+ ~–Urfie–r214Dt

(4rDt) ‘1’
(7)

where N2 is the number of ionizations, and r is the radial

distance from the origin at the center of the cavity.

CAVITY ANALYSIS

The shape of the pulse created by the ionization may

be obtained through an analysis of the cavity. An exact

solution of Maxwell’s equations in transient form can-

not be accomplished because of the complex form of (7).

Also, the recombination effect takes place in a time

which is large as compared to a microwave period. This

allows a semisteady-state approach, in that E will be

assumed to vary only as e~”~. Since the number of car-

riers created is generally too small to significantly

change the real part of the dielectric constant, it is also

assumed that the electric field is undistorted by the

ionization. The power dissipated after ionization is

given by (8).

P2=~
s

q2T

2V
uzE2dV = — J2m* ~

nE2dV. (8)

In (8), crz is the conductivity after ionization, E is the

electric field intensity, g is the charge, ~ is the carrier

relaxation time, and m* is the effective mass of the car-

riers. It has been assumed that r is unchanged by the

plasma-like conditions near the point of ionization. Sub-

stitution of (7) into (8) yields

q%

s

N2q2re-f 1’*
P2=——— nlE2dV +

2m* ~ s(4irDt)’122m* ~

e–,2[kDtE~dV. (9)

The first integral represents the power dissipated with

no ionization present and can be rewritten as

(lo)

where e is the permittivity, and U is the maximum en-

ergy stored in the cavity. The normalized change in

power is then

AP eNze–LIT”
— s~–r2[4DtE2dV.

PI – 2n1U(4rDt)31Z ~
(11)

The field for a spherical cavity in the TEOII mode has

only one component, given by [I 1 ]

E. sin 6
E4=—

[

sin (kr)

k~
COS (kr) — — 1kr “

(12)

In (12), EO is a constant, k = 21r/h, and ~ is the wave-

length. The maximum energy stored for this mode is

27reEo2
u= — K,

3k3
(13)

where

K= ka -1+ “a’ sin, (ha) ,
[ ka 1 (14)

and ‘(a” is the radius of the cavity. Since the semicon-

ductor crystal has been assumed several times larger

than the diffusion volume, and since most of the re-

combination takes place in one diffusion volume, little

loss in generality is suffered if the integral is taken over

an infinite radius. This is indicated in (15), where the

angular
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AP 2~2E–t17. w

x= J

~–(kr)2/4k2Dt

nlK(4~Dt)812 O

“[sin (kr)

1
— – COS (kr)- 2d(kr)

kr

SEMICONDUCTOR-FILLED MICROWAVE

(15)

integrations have already been performed. Evaluating

the integral in (15), one finds

AP _ NJk e–~/’~ 1 1

PI – [

— ———
nlK 4~Dt 2 4k’Dt

‘E+iikw’”’l ‘1”
The singularity at t = O should be avoided. It is un-

realistic due to the impulse conditions assumed at the

origin and t = O. Equation (16) should, however, give

good results for t >0. Figure 1 shows the further nor-

malized results for high purity Cd!3. The literature

values [12 ] used for the various parameters were r.

= 10–8 see, D =13 cm2/volt-second, and e = 5.62eo. Com-

putations were based on the assumption of a frequency

of 46.5 Gc/s.

An interpretation of Fig, 1 can be made in terms of

the physical aspects of the problem. The initial decrease

in attenuation is due to the ‘(spreacling” of electrons

which results in the deterioration of the plasma-like

conditions at the origin for t = 0+. The peak in attenua-

tion can be attributed to the fact th~at the maximum

field intensity does not occur at the cmigin for the par-

ticular mode chosen. As charge carriers diffuse outward

from the origin, a “front” or a maxim~um in the charge

density passes through the point of maximum field

intensity. Finally, recombination and passage of the

“front” cause the decrease of attentlation tolvard its

initial value. The unique ‘(peaking” effect obtained with

this mode raises the possibility of basic measurements of

the properties of solid-state plasmas. Also, the height

of the pulse leads to the expectation that such a method

might be readily utilized for radiation detection.
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Fig. 1, The variation in normalized power as a function of time for
a CdS filled spherical cavity operating in the T EOII mode at
46.5 Gc/s.
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